4 DYNAMIC JAHN-TELLER EFFECT IN THE ‘T,...

3M. D. Sturge (unpublished).

14The Zeeman effect is quite insensitive to the inclusion
of second-order terms, or to reasonable variations in ¢
and %.

553, K. Wigmore, H. M. Rosenberg, and R. F. Garrod,
J. Appl. Phys. 39, 682 (1968).

6We could reduce the size of the matrix by a factor of
3 by choosing linear combinations of vibronic states which
transform as I'g, 'y, and I'3. However, the probability of
error in this process is not negligible, and in a real basis
the degeneracies of the computed energy levels provide a
valuable check on the accuracy of the calculation,

"our calculation differs from that of Ham and Schwarz
and O’Brien (Ref. 18) in that our basis states are those of
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the distorted rather than the undistorted complex.

18, S, Ham, W. M. Schwarz, and M. C. M. O’Brien,
Phys. Rev. 185, 548 (1969); F. S. Hamand W. M. Schwarz
(unpublished).

195, 8. Griffith, Theory of Transition Metal Ions (Cam=-
bridge U. P., Cambridge, England, 1961), Table A20.

2 T we obtained x=2.6 for the T, term of V* in
KMgF;. If V; is the same as for Co®, we find y=0.1
for w, =100 cm™!. The shifts (relative to the I'; ground
state) are —8 em™! for I'y, —5 em™ for I'}, and —2 cm™
for I"g . These are quite appreciable relative to the spin-
orbit splittings (39, 28, and 15 em™, respectively). How-
ever, they are maximum shifts, and %Zw, would not need
to be much larger for them to be negligible.
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The spin-lattice relaxation of V% in TiO, is measured at liquid~helium temperatures using

electron-spin-echo techniques.

The T relaxation decay function is represented by an expres-
sion which is the sum of two exponential functions.
tials are 0.11 and 0.70 sec and they do not depend on temperature or sample size.
is annealed in air and the relaxation decay constants become 0.16 and 1.10 sec.

The decay constants for the two exponen-
The sample
This is inter-

preted as one constant being related to the equilibration of a “hot” spin system and a set of
resonant phonon modes, and the other decay constant being related to the relaxation of the

phonon mode by defect scattering.

I. INTRODUCTION

Spin-lattice relaxation! is of continuing interest
because the process of energy flow from defect ion
sites to the modes of a crystal lattice has important
consequences on laser efficiency in solid-state laser
crystals. The pulse techniques used for many years
in nuclear-spin-relaxation experiments? are finding
increased application in electron-spin-relaxation
studies. When the coupling between the spin system
and the phonon system is strong enough and the pho-
non relaxation slow enough, the “phonon bottleneck”
can be observed.® In this paper we present the re-
sults of a spin-lattice-relaxation study of V* para-
magnetic impurities in TiO, (rutile) using an elec-
tron-spin-echo? pulse-sequence excitation of the
spin system andthe subsequent relaxation of the spin
and phonon systems back to thermal equilibrium.

In Sec. II of this paper, we present a standard
spin-echo vector-model discussion of the spin exci-
tation and relaxation. We then discuss the results
we would expect from this simple theory. In Sec.
ITI, we present our experimental procedure and re-
sults and show how our results differ from the sim-
ple vector model. In Sec IV, we discuss a more

general theory of spin-lattice relaxation to take into
account such processes as the stimulated emission
of phonons and nonequilibrium phonon distributions
which arise from the strong spin-phonon coupling.
We use this more general picture to explain our
experimental results, In Sec. V, we point out some
conclusions and speculations that come out of the
more general picture.

II. SIMPLE VECTOR MODEL OF RELAXATION

The dynamics of a spin system can be represented
by a magnetization vector whose motion is similar
to the motion of a classical gyroscope. The dynam-
ics of our four-pulse-spin-echo-relaxation experi-
ment can be described by this vector model. In our
relaxation measurements, we apply a pulse pair
followed by another pulse pair. The separation be-
tween the pulse pairs is much longer than the trans-
verse relaxation time 7T,. The two pulse pairs are
identical and the separation between the individual
pulses of a pair is shorter than 7, and will produce
an echo.

Initially, the magnetization vector is aligned along
the positive z axis. An intense microwave pulse is
applied to the spin system and, in a frame of ref-
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FIG. 1. (a) Spin-system magnetization after a 6 pulse

where the magnetization vector M, has a z component
of M, cosf and a transverse component in the x-y plane
of M, sind. (b) Pulse sequence used to measure the T,
relaxation time. 6 and 180° are the excitation angles

of the two pulses of the echo sequence which are separa-
ted by the time 7. The second pulse pair is applied at
the time . (The pulse lengths are small compared to

T and ¢.)

erence rotating about the z axis with a frequency
equal to the applied microwave field frequency, will
rotate or excite the magnetization vector Mto an
angle 6 from the z axis, as shown in Fig. 1. After
the first pulse, the magnetization component in the
x-y plane decays or dephases with a characteristic
time constant 1/Aw, where Aw is the inhomogeneous
linewidth. A second pulse is applied which rotates
each individual magnetization spin vector by 180°
and produces the spin echo.* The amplitude of the
first echo, A,, is dependent upon the relaxation
time T, and the transverse magnetization that is
excited by the first pulse. If the time between
pulses 7 is held fixed, we have the following re-
lationship:

Ag=kM,siné,

where % is some constant which depends on T, and
7, M, is the magnetization along the z axis before
the first pulse is applied, 6 is the angle of excita-
tion of the first pulse, and A, is the amplitude of
the first echo.

After a time ¢, which is much longer than T, but
comparable to 7,, we apply a second pulse pair
similar to the first. The second echo amplitude A,
is proportional to the transverse magnetization that
is excited at time ¢ by the first pulse of the second
pulse pair and the amount of magnetization that is
along the z axis at the time ¢, Thus we have
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A,=kM, (t)sind,

where 2 and 6 are the same as for the first pulse
pair and M, (¢) is the magnetization along the z axis
at time ¢£.

If we assume a simple exponential relaxation of
the z component of magnetization, we obtain

M, () =Mq+Mgy(cos—1) e /Tt

where ¢ is the time between the pulse pairs and T,
is the longitudinal relaxation time. The ratio of
A,/A, is given by

1-A,/Ay=(1-cosB)e*/T1,

In the liquid-helium temperature range, standard
electron-paramagnetic-relaxation theory! gives a
direct relaxation process with a rate proportional
to the temperature 7, a Raman-process rate pro-
portional to 77 or T°, and, if the crystal-field en-
ergy A is smaller than the highest phonon energy,
an Orbach process proportional to e2%7, In the
case of V* in TiO, we would expect a T, given by

1/T,=AT+BT",

where A and B are constants of proportionality.

If we assume that the phonon system is heated by
the spin system, then the above equation must be
modified to include the phonon bottleneck. In a
pulse saturation experiment like that of Scott and
Jeffries,® one would obtain a 72 temperature de-
pendence in place of the direct process.

In our experiments, our pulse lengths are shorter
and our amplitudes are much greater than those used
in pulse saturation measurements. We should not
be too surprised to find different experimental re-
sults, but the nature of the difference is not clear
from the simple vector model. We have to develop
a more realistic model to handle all the experimen-
tal conditions that may be imposed on a spin sys-
tem. Before we discuss another model, we shall
present our experimental results for spin-lattice
relaxation of V* in TiO,.

III. EXPERIMENTAL PROCEDURE AND RESULTS

The pulse spectrometer is capable of producing
microwave pulses at 9. 3 GHz with a power of up to
800 W for pulse lengths that can be continuously
varied from 20 to 100 nsec. The separation be-
tween pulses of a pulse pair can be varied from 0. 1
psec to 10 sec and the time delay between pairs can
be varied from 50 msec to 5 sec. The sample was
a disk of rutile with a diameter of about 1 cm and a
thickness of about 2 mm, and doped with 0. 05-at. %
V* paramagnetic impurities. The sample was
placed in a waveguide (0. 900% 0. 100 in. ) and cooled
by liquid helium, whose temperature was varied
from 4. 2 to about 1. 8 °K. After the sample came
to thermal equilibrium, two pulse pairs were ap-
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FIG. 2. Semilog plot of the ratio 1 —A;/A, for one of
the relaxation measurements. The straight-line T,
curve is obtained from subtracting off the straight-line
Tip part of the nonlinear T, curve.

plied and the two echoes were superimposed on the
same photograph of the oscilloscope trace. The
ratio of the echo amplitudes A,/A, was then mea-
sured in the photograph.

The T; relaxation of all the hyperfine lines of the
vanadium spectrum behaved in the same way. A
typical plot of 1- A, /A, is shown in Fig. 2, which
also shows the T, decay curve. The excitation
angle or angle of rotation of the first pulse is ex-
pressed by some factor times 6 which is an unknown
but high power level. The T, decay curve can be
represented by the sum of two exponential decay
curves. At very low power levels, the 7, decay
curve becomes a simple exponential. Table I gives
a summary of our experimental results. Our T,
decay can be represented by the expression

1-A,/Ay=(1-cosb) (ae™t/Tia +be /),

where a and b are constants and Ty, and Ty, are the
two relaxation decay constants.® .

The most striking result is that the two T, decay
constants do not depend on temperature from 1.8
to 4.2 °K. We changed the thickness of the disk by
about 10% and saw no change in the decay constants.
We changed the condition of the surface from a
smooth surface to a rough surface and saw no
change in the decay constants. We annealed the ru-
tile sample for 2 days in air at 850 °C and observed
some change in the decay constants as noted in the
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table, During the measurements the pulse widths
were fixed at 50 nsec and the pulse separation in
the pairs was fixed at 1.5 usec. We noted also that
the point where the T, decay curve would intercept
the vertical axis at time zero is fixed once a cer-
tain power is reached. The applied power was in-
creased by a factor of 16 above the plateau power
level and the curve intercept remained fixed at
about 1-A4,/A4,20.7+0.1,

In summary, our experimental results show (i)
a spin-lattice-relaxation curve that can be repre-
sented by the sum of two exponentials; (ii) the re-
laxation time constants are independent of temper-
ature up to 4.2 °K, independent of thickness and
surface conditions; (iii) one of the relaxation time
constants depends on annealing history; (iv) the re-
laxation shows some nonlinear behavior in the
0-50-msec time domain,

IV. MORE GENERAL THEORY

In most electron-paramagnetic-relaxation exper-
iments, the paramagnetic spins are contained in a
dielectric crystal as impurities and the crystal is
placed in a microwave cavity. To consider the in-
teraction between the spin system and a field, we
first specify the modes of the field. The effect of
the field on one individual spin is then obtained as
dependent on the excitation of all the modes of the
field which are usually assumed to be in thermal
equilibrium,

When more than one spin is placed in the field,
there then arises between the individuals an inter-
action or coupling that is mediated by the field.
One then finds that processes can occur where the
field energy can be exchanged between the indi-
vidual spins. These processes modify the inter-
action between the spin system and the field.

Dicke” and others® have discussed this problem
in the form of N two-level systems coupled to a
field system. In these discussions, the first step
in the analysis is to define states for the whole spin
system. These states take into consideration the
degeneracy that is inherent in a system with many
identical energy levels., The states thus defined
may have phase factors between them. These
phase factors arise from the field in which the spin
is imbedded.

The electron-paramagnetic-spin system can cou-
ple to two fields, the electromagnetic (EM) field of
the microwave cavity which usually excites the
spins and the phonon field of the crystal which us-
ually relaxes the spins. Since the velocity of light
is so much greater than the velocity of sound in a
crystal, the wavelength of the EM field is much
longer than the wavelength of the phonon field at the
same frequency. Thus if the spin states are de-
fined with phase factors for the EM field, then the
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TABLE I. Summary of experimental results.
Angle of Temp Ty, T Ty
rotation? (°K) a (sec) b (sec) (usec)
1.00 1.30 0.23 0.10 0.35 0.65 7.0
1.46 1.30 0.28 0.10 0.42 0.69 6.0
2.00 1.30 0.24 0.11 0.56 0.62 5.0
2.86 1.30 0.33 0.11 0.54 0.82 4.0
4.00 1.30 0.27 0.07 0.58 0.61 4.0
1.06 1.87 0.23 0.10 0.28 0.70 6.5
1.46 1.87 0.26 0.10 0.44 0.60 5.0
2.06 1.87 0.37 0.10 0.46 0.70 4.5
2.86 1.87 0.26 0.11 0.56 0.70 4.0
4.00 1.87 0.25 0.08 0.57 0.66 4.0
1.06 2.48 0.22 0.08 0.39 0.62 7.0
1.46 2.48 0.39 0.11 0.42 0.75 5.0
2.06 2.48 0.36 0.15 0.46 0.71 4.5
2.86 2.48 0.37 0.12 0.48 0.65 4.0
4.00 2.48 0.38 0.09 0.48 0.72 4.0
1.06 4.20 0.20 0.10 0.35 0.51 6.0
1.46 4,20 0.40 0.12 0.34 0.75 5.0
2.06 4.20 0.40 0.12 0.44 0.70 4.0
2.86 4.20 0.36 0.12 0.47 0.65 4.0
4.00 4.20 0.37 0.11 0.46 0.60 4.0
After the sample was annealed the following data were obtained:
04 4.20 0.20 0.16 0.60 1.10 5.0

% is an arbitrary excitation angle which cannot be calculated because of uncertainties in the reflection coefficient.

phase factors will not be right for the phonon field.
Thus if the spin system is excited by the EM field,
then the spin system will have high “cooperation,”
as Dicke' called it, for a long wavelength or a
small quasi-k-vector. But since the spin system
cannot have high cooperation for two widely differ-
ing wavelengths, the spin system must have low
cooperation for the phonon K vector. The spin sys-
tem must alter the phase relations so that energy
may flow to the phonon system. In general, this is
accomplished by spin-spin interactions and by in-
homogeneous broadening. This is noted by Buley
and Cummings.®

Let us briefly review Dicke’s presentation by
assuming that the individual particles have two en-
ergy levels and thus have an effective spin of 3.
Each particle of spin has S!, S!, and S! as ob-
servables, and S} is taken as diagonal in the energy
representation, For our system, the energy is the
Zeeman energy i, where @ is the Larmor fre-
quency. All the spins are assumed to have the
same frequency. (A static distribution of frequen-
cies gives rise to a decay of the free induction sig-
nal and is related to the shape of the echo.) To con-
sider the system of N spin-3 particles, we form the
product states of the individual states. These
product states are specified by a total spin S which
is analogous to Dicke’s “cooperation number,” the
energy m which is the total energy of the spin sys-

tem and is the eigenvalue of the total energy oper-
ator S,, and some quasi-l?—vector which specifies
the phases between the individual spins. Each of
the operators and eigenvalues should be subscripted
with a quasi—ﬁ-vector. But for our work we want to
focus upon the state of affairs when the spin system
has acquired the proper phases so that high cooper-
ation occurs for a k vector of the phonon system.
We assume that there are enough spins such that a
large number of spins have frequencies equal to a
phonon mode frequency. So, there is large degen-
eracy with respect to each phonon mode. The
amount of degeneracy is approximately N, /pAw,
where N,,; is the total number of spins, p is the
density of phonon modes, and Aw is the static line-
width of the spin system.

Thus we assume that our S and m refer to the co-
operation and energy of those spins on resonance
with a phonon mode K. Also defined are S,and S_
which are the raising and lowering operators, re-
spectively, for the total energy of the spin system.
We will not need to carry along the k-vector sub-
script. Thus the state of the spin system is given
by

]S,m) ,

where -S<m=Sand 0<S=<3 N, and N here refers
to the number of degenerate spins on resonance
with the mode k. The raising and lowering opera-
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tors act on the state

S,|S,m)=[S(S+1)=mim+1)]*2|s,m+1),

S.|S,m)=[S(S+1)~m(m—1)]""2|S,m-1),

It will be convenient for our discussion to change
the notation slightly and define a new energy number
n=m+S which is a measure of the energy above the
lowest energy state. In this new representation we
have

S.|8,n)=[(25~n)(n+1)]*/[S,n+1),

S.|8,ny=[(2S-n+1)(n)]*?|S,n-1),

where now O<n=<2Sand 0=<S=<3N.

As mentioned by Dicke, “ resonance trapping” and
“ superradiance” appear naturally in the formalism.
The value of S is determined by the amount of phase
coherence or cooperation there is between the in-
dividual spins for this particular wave vector.

The modes of the phonon field are specified by a
wave vector kK and each mode can be excited to some
energy level. The energy levels for each mode are
the energy levels of a simple harmonic oscillator.
The phonon number p, which is the eigenvalue of the
operator b'bh, is a measure of the energy in the
phonon mode. There is also a b' and a b operator
for each of the phonon modes.

We will focus our attention upon the interaction
between a degenerate set of spins on resonance and
with the appropriate k vector of a phonon mode.

The coupling between the spin system and the pho-
non system will be given by a term

Hyny=hw(S,b+S_b"),

where w is the interaction frequency. The constant
w is a result of considering the details of how the
phonon mode causes fluctuations in the crystal field
which is coupled through spin-orbit coupling to the
spin to cause its relaxation. We will apply standard
perturbation theory to the coupled spin-phonon sys-
tem. But we must keepin mind that this approach is
valid after T,, that is, after all the quantum-me-
chanical superposition has disappeared. Only then
can we be sure that our systems can be specified
by the quantum numbers » and p.

The time rate of change of the energy of the spin
system is then given by

B Tpns1) - Tp(r=n-1),

where T, is the transition probability. We then
have

Tp (n-n+1)=(27f/h2)l<",P|3C1ntl"+1’ p- 1)[2p(9)
= 2w p(Q)(2S—n)(n+1)p,

where p() is the density of phonon states at the
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frequency . Similarly, we have
TP (n-on - 1)= (ZW/ha)l ( nyplgcintln - 1,P+ 1 >lap(n)

=2mw?p(R)(2S —n +1)n)(p +1).

Thus we obtain for the time rate of change of the
spin-system energy »

d%'—l =2mw? p(Q)[2S p-n)-n (2p +1~n)].

The above equation is nonlinear and contains
stimulated-emission phenomena. When # is near
to its maximum value of 25, which corresponds to
complete population inversion, the equation is ap-
proximately

an

=_ 2mw?p(Q)2S(p +1),
dt n=2S

and hence » decays with a rate that depends on S
and on the number of phonons. However, when n
is near S, which corresponds to spin-system sat-
uration, the above equation is approximately

dn

~ 2
7 = 2mwep(R)S(S+1),

n=S

where now » decays with a rate that depends on
S(S+1) and not on the phonons, This is the super-
radiant region and corresponds to stimulated emis-
sion dominating the relaxation process.

In the region where % is near zero, which is the
region of interest for this work, we have

2 - amtp( @25 (o= ). @

Also, we have for the rate of change of the phonon
number p, where we assume an exponential relax-
ation of the phonon mode to thermal equilibrium,

9 . _ amp(@)2S (=) +3 (60~ p), (2)
where 7 is the relaxation time for the phonon mode,
and p° is the thermal equilibrium phonon number.
Equations (1) and (2) are two coupled linear equa-
tions which can be solved to obtain two time con-
stants, as shown in the Appendix,

1 1 1\
=W+—+<W2+~E§> R

T4 2T
IS S g _1_>“3
Ty =W+ 27 <W * 47t ’

where W=4mw3Sp(R).
The solution for the spin number x(¢) is given by

n(t) = 5{n(0) - cots a[ p(0) = T;,p%/ 71} 7t/ T1a
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+3{n(0)+coti a[p(0) = Ty, p%/ 7]} et /T15

where 7(0) and p(0) are the spin-system excitation
number and the phonon-system number, respec-
tively, at a time equal to approximately zero, but
after a suitable time for coherence effects to be
gone, and tana=2Wr,.

In order to estimate the spin and phonon number
at approximately zero, let us assume that the pho-
non-relaxation time is infinite and that the following
equations for » and p apply:

5’7’2 W(2S (b - 1) =n(2p +1 -n)),

%:- W(2S (p = n) +n(2p +1=n)).

One solution to the above system of equations is
n(t) +p(t)= const. So we have 7 +p=ng.,+n°+p°,
where 7,,, is the spin number that is excited by the
first microwave pulse, #° is the thermal equilib-
rium number of spins, and p° is the thermal equi-
librium number of phonons,

Also, the above equations have an equilibrium so-
lution for when 7 and p are zero. If we take % +p
= ¢, where c is a constant, we have

i=3(c+25)- 5(c®+45%)"2,

where 7 is the equilibrium value of spin excitation
after the spin and phonons have come to equilibrium,
but before the phonon mode can relax. To make an
estimate of 77, we assume that #° and p° are each of
the order of kT /0. The value of #n,,, depends on
the first pulse and has a maximum value of 2S. As
noted in Dicke,” the value of S in the high-tempera-
ture approximation is Nii/4% T, which in our case is
much larger than #»°and p°. Therefore, we have
that 7 is approximately 25/3 +2T/61 Q.

Since S,=~- Scosf and S,=n~ S, we have that
1-cosf=n/S. Therefore the value of 1 -cosé at
approximately zero is given by #/S or % +kT/6HQS,
which for our experimental conditions is about 0.67.
This is to be compared with our experimental re-
sults of 0.7+ 0,1 with an uncertain temperature de-
pendance.

To compare the theory of this part with our ex-
perimental results, we see that the theory depicts
a decay curve with two exponentials, and a satura-
tion point or plateau value for 1-cosé at approxi-
mately zero. Any excess excitation of the spin sys-
tem above 2S would quickly be radiated through
stimulated emission of photons or phonons. If we
take values of W=2.01 sec! and 1/7=6, 51 sec™?,
we obtain the following values:

Ty,=0.11 sec, Ty, =0.70 sec,

a=0.30, b=0.40,
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which are consistent with our experimental results
before annealing the sample. After annealing, we
obtain the following values:

Ty,=0.16 sec,
a=0. 20,

Ty, =1.10 sec,
b=0.60,
which give us W=1.19 sec™ and 1/7=4.77 sec™.

V. CONCLUSION

The more general theory that we are presenting
seems to explain most of the experimental results.
It is just the application of the rate equations to a
system of N two-level systems coupled to a phonon
system. However, care must be exercised not to
apply the equations too near the time that the pulses
are applied as coherent effects modify the motion
of the system and hence cannot be described by rate
equations. More general coherent effects lead to
phenomena such as self-induced transparency.®
The problem of coherent phonon generation via
photon stimulation leads to a difficulty as seen in
this more general description. The change of the
cooperation number S from a value appropriate for
the photons to a value appropriate for phonons has
to be accomplished for the stimulated emission of
phonons to occur. This is somewhat like a change in
the k vector for the photon field to the k vector of
the sound field at the same frequency. This then
requires a T,-type process which is fast enough
not to limit the pumping of energy into the phonon
system,

The value of S for a given quasi-l?—vector is lim-
ited by 3N, where N is the number of spin in res-
onance with the phonon mode K. This depends on
the linewidth Aw of the spin system. An estimate
of the value of N per mode is N,,;/Awp(w), where
N, is the total number of spin, Aw is the linewidth,
and p(w) is the density of phonon state. For our
experiment, this is about 108

Also note that the T, relaxation time depends on
the power or the angle of excitation. We are con-
tinuing our study of this effect.

APPENDIX

We want to solve the following system of linear
differential equations:

an_ - ap_ _ RN
dt—W(P n), 7 w(p n)+T(1> ?).

We define the vector (n,p) such that

dfn\_(-W W \/n\ (00)/n°

at\p)"\w -w-r\p/*\0R/\p°/)’
where R=1/ 'r.b The solution to the homogeneous
part has eigenvalues

== W-3R+ (W2+iR?)2,
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which are two two time constants
1/Tye=W+3R+ (W2+3R?)12,
1/Typ=W+3R-( W2+3R?) 2,
The eigenvalue 1/T,, has as an eigenvector
cosza
(—-sin 3 a),
and 1/T;,, the eigenvector
cosza
(sin% a> ,
where tana = 2W/R.

Thus the most general solution to the homogen-
eous equation is written as

n(t) cosza cosia
=Aet/Ma ue Be /T 2
<p(t)) -sinte)t7° sinza/’
where A and B are arbitrary constants.
The solution to the inhomogeneous part is obtained
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in the standard way to obtain the complete solution,
where A and B become

A=(etT1a=1) T\, p°R/2sinsa +A,,
B=(et/T1s~1) Ty, p°R/2sins o + By,

where A, and Bj are determined by the initial con-
ditions and given by

Ag=%[n(0)/coss a - p(0)/sinj a] ,

By =3[n(0)/costa + p(0)/sins a] ,

where 7(0) and »(0) are the excitation number for
the spin system and phonon system, respectively,
at time zero.

Therefore the first component of this vector so-
lution gives us for the time dependence of the spin-
system excitation number

n(t)=% {n(0) - cott a[p(0) - p°Ty, R]} e"t/T1,

+% {n(0) +cot a[p(0) -PoleR]}e"/Tu, )
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This paper describes experimental studies of multiple scattering of 13 different heavy ions
with 3 =Z; =30 in the energy range of 200~1000 keV, trahsmitted through thin (8~25 ug/cm?

carbon foils.

The agreement between our experimental data, recent theoretical calculations,

and published experimental data is found to be satisfactory, although a small systematic devia-

tion exists for thicker foils.

I. INTRODUCTION

For several years, multiple scattering of light
ions of high energies has been extensively studied. !
Recently, there has been a growing interest in the
investigation of multiple scattering in very thin
foils at energies low enough for a classical theoret-

ical treatment to be applicable.? This interest is
motivated both experimentally and theoretically.
A knowledge of multiple-scattering angular dis-
tributions is necessary in several cases. For ex-
ample, in experiments with heavy ions, multiple
scattering very often appears as an undesirable
process decreasing the resolution of the experi-



